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The axisymmetric flows arising in a rotating annulus with a superimposed forced 
flow are investigated with a pseudo-spectral numerical method. The flow enters the 
annulus at the inner radius with a radial velocity, then develops into a geostrophic 
flow azimuthally directed and flanked by two Ekman (nonlinear) boundary layers, 
and finally exits the outer radius, with a radially directed velocity. In this study the 
rotation rate of the cavity is fixed and very high. When the forced flow is weak, the 
flow is steady. On increasing the mass flow rate, the flow evolves to a chaotic temporal 
behaviour through several bifurcations, which perturbs the basic spatial configuration 
of the flow. The first bifurcation drives the steady state into an oscillatory regime, 
associated with a break of symmetry with respect to the midheight of the annulus. 
The entry flow travels radially through the cavity as in the steady flow, but it wavers 
and then is alternately sucked towards each Ekman layer. The frequency of this 
oscillation is close to the rotation rate frequency of the cavity, which is characteristic 
of inertial waves in rotating flows. A second transition to a quasi-periodic regime is 
characterized by the appearance of a second frequency. Further increases in the flow 
rate lead to a period-five state, via a locking of both frequencies, and then to a chaotic 
motion. This second frequency is of the order of the inverse of the Ekman spin-up 
characteristic time, suggesting that this instability is originated by the relaxation of 
the perturbations in the flow field. These perturbations of the unsteady flow field 
are corotating vortices along the rigid boundary walls. They are excited by the 
entry flow and their strength diminishes with increasing radius due to the low value 
of the Reynolds number. The parameters characterizing the unstable flows are also 
consistent with this explanation. The conclusion is that in this configuration, the origin 
of the described dynamical behaviour is not the instability of the Ekman boundary 
layers, as could be expected, but the instability of the entry flow. The reason is the 
importance of the nonlinear inertial terms in cavities with small radius of curvature. 

1. Introduction 
The technological applications of source-sink flows in rotating annular cavities 

have motivated numerical and experimental studies on the fluid motion in these 
configurations. The cooling of rotating machinery may be the most obvious one. 
Since many physical variables depend strongly on the flow regime, it is essential to 
understand the different physical processes responsible for the transition of an initially 
laminar flow to a turbulent one. 
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FIGURE 1. Schematic diagram of source-sink flow in the rotating cavity. 

In these systems the flow is driven by the constant rotation of the walls and by a 
forced flow entering at the inner cylindrical wall and coming out at the outer cylinder. 
The laminar flow structure in this configuration can be divided into four regions: an 
inner source region, two separate Ekman layers, an outer sink layer, and an interior 
inviscid core which is bounded by the aforementioned layers. (Note that when the 
nonlinear inertial terms are not smaller than the Coriolis force, it is not strictly proper 
to retain the term ‘Ekman layer’ since, by definition, Ekman layers occur only when 
the nonlinear terms are negligible. However, the boundary layers which occur in 
practice are so similar to Ekman layers that, in this paper, the term ‘Ekman layer’ is 
retained even in the nonlinear case (see Bennetts & Jackson 1974; Owen, Pincombe 
& Rogers 1985).) By matching the solution in each region Hide (1968) found an 
approximate analytical solution for the basic steady flow in the cavity. This solution 
is axisymmetric and it is also symmetric with respect to the middle height of the 
cavity ( z  = 0 in figure 1). At the interior core, the flow is geostrophic and its strength 
is related to the mass flow rate. The Eknian layers are formed near the horizontal 
walls and their structure is well known (see for instance Greenspan 1969). 

The experimental studies on source-sink flows in rotating annulii confirm that 
the basic steady flow is well approximated by the axisymmetric solution by Hide 
(Hide 1968; Bennetts & Jackson 1974; Owen & Pincombe 1980; Chew, Owen & 
Pincombe 1984; Hyun 1984). Axisymmetric and non-axisymmetric instabilities of 
this basic steady flow have been observed by Hide at very low mass flow and 
rotation rate values, in cavities with small radius : the axisymmetric instability ap- 
pears as stationary concentric sheets of dye and the cause is not established, the 
non-axisymmetric instability shows nine short arms emerging from the source (his 
figure 10e). Bennetts & Jackson (1974) investigated the flow in the case of a rapidly 
rotating cavity and small radius of curvature corresponding to narrow boundary layers 
and strongly nonlinear regimes using a numerical method. They studied the differences 
between their nonlinear results and the solution of Hide and provided some experi- 
mental results to assert the computations. The experiments of Owen et al. (1985) were 
performed in a cavity with small radius of curvature for high values of the mass flow 
and rotation rates. Owen & Pincombe (1980) measured the velocity and compared 
it with theoretical predictions such as the Ekman linear solution, the length of the 
source and sink regions (Hide 1968) and nonlinear corrections for the geostrophic 
velocity (Faller 1963). Chew et al. (1984) obtained a numerical solution for the steady 
flow assuming axisymmetry and also symmetry with respect to the middle height of 
the cavity. Owen et al. (1985) compared their measurements of the velocity in the 
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fully turbulent flow with theoretical solutions (the model of Hide was extended, using 
the integral momentum techniques of von Karman, to include laminar and turbulent 
flows.) The visualizations of the flow revealed that the main structures (four regions of 
the steady flow) are also maintained in the turbulent flow, the symmetry with respect 
to the midheight plane perpendicular to the axis of rotation, z = 0, is broken in the 
source region, which is the more affected in the turbulent regime. As the flow was 
visualized in planes ( r ,  z ) ,  the non-axisymmetric features of the flow remain unknown. 

The purpose of other experimental studies in rotating source-sink flows (see Faller 
1963; Faller & Kaylor 1966; Tatro & Mollo-Christensen 1967; Caldwell & Van 
Atta 1970; Cerasoli 1975) was the investigation of the instabilities of the Ekman 
boundary layers. For this reason, the configuration is somewhat different from that 
used in the experiments mentioned in the previous paragraph: the flow enters the 
outer annulus and exits the inner annulus, and they use cavities with larger outer 
radius. The stability of the Ekman layer was studied by Lilly (1966) in his numerical 
solution of the eigenvalue problem. Theoretical investigations were carried out by 
Faller & Kaylor (1966). Two types of instability are associated with the Ekman 
boundary layer: type I, which was observed in experiments by Faller (1963), Tatro & 
Mollo-Christensen (1967), is a non-viscous instability with a point of inflexion in the 
velocity profile and the type I1 instability involves Coriolis and shear forces. Cerasoli 
(1975) has criticized Tatro & Mollo-Christensen’s experiments, and his conclusion is 
that the wave motions interpreted as type I1 instability by these authors were in fact 
originated by probe-associated disturbances and the boundary layer waves presented 
by Caldwell & Van Atta (1970) were type 11 waves, similar to those observed by 
Faller & Kaylor (1966) using dye techniques. 

The fact that these instabilities depend only on the local external flow field implies 
that they are a general feature of all rotational boundary layers and not just a 
singular manifestation in a particular configuration. For instance the flow patterns 
observed in the investigations of the von Karman boundary layer on a disk that 
rotates in stationary air and on spin-up and -down experiments show the same 
Ekman boundary-layer instabilities (Weidman 1976). The experimental study of the 
flow over a disk during spin-down to rest revealed a class of circular waves in the 
boundary layer and, at high Reynolds numbers, the type I spiral waves are also 
excited with the circular waves (Savas 1987). The basic properties associated with the 
first Ekman-layer instability, type 11, were also confirmed by Iooss, Nielsen & True 
(1978). A review of the results on instabilities on the boundary layers is in the paper 
by Faller (19911, and a shortened summary of these results is included in table 1. (A 
wide range of nonlinear phenomena and instabilities in rotating flows is also reported 
by Hopfinger & Linden 1990.) 

In this paper we study the spatio-temporal behaviour of the flow upon increasing 
the mass flow rate. The configuration of the annulus (aspect ratio, radial outflow) 
that we have chosen is similar to the experiments by Owen et al. (1985) and models 
practical situations. Although the experimental results of those authors are exhaustive 
for the velocity profiles of the flows they do not elucidate the mechanisms of the 
transition to turbulence. In the present work we analyse the spatial structure of 
the instabilities in an attempt to identify the origin of the instabilities, whether on 
the Ekman layer or the entry flow, and the physical variables responsible for both 
mechanisms. 

High spatial resolution is a requisite to describe accurately the Ekman layers and 
especially for a numerical study of time-dependent motions. Spectral methods have 
been successfully applied to compute complex time-dependent flows. The two most 
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commonly used spectral methods are the tau and collocation versions, which differ 
by the test functions in the weighted residuals statement (Gottlieb & Orszag 1977; 
Canuto et al. 1987). Orszag & Kells (1980) have obtained the three-dimensional 
time-dependent flows in plane Poiseuille and plane Couette configurations. They 
solved the Navier-Stokes equations for the primitive variables (velocity-pressure) 
using a spectral tau-method with Fourier series in the streamwise and spanwise 
directions and Chebyshev polynomials in the wall-normal direction combined with a 
fractional time-step method. Kleiser & Schumann (1980) have proposed an influence 
matrix technique which has the advantage of enforcing the divergence-free velocity 
constraint, by solving a Poisson equation for the pressure with Dirichlet boundary 
conditions. Le Quere & Pecheux (1989) have used this matrix influence technique 
with a spectral tau method to study the time-dependent flows in a thermally heated 
tall annulus. The pressure and velocity variables were expanded in truncated series of 
Chebyshev polynomials in both radial and axial directions. In previous works (Vanel, 
Peyret & Bontoux 1986; Ehrenstein & Peyret 1989; Pulicani et al. 1990) the flows in a 
two-dimensional horizontally heated cavity have been studied using spectral methods 
for the Navier -Stokes equations with the vorticity-streamfunction formulation, which 
ensured automatically the incompressibility equation. Here, we have used a spectral 
collocation Chebyshev method associated with an extension of the influence matrix 
technique used by Pulicani et a/. (1990), to solve the Navier-Stokes equations with 
the vorticity-streamfunction formulation in cylindrical coordinates. 

In 42 we formulate the problem and describe the numerical method. The results 
on the successive transitions of the observed flow are given in $3.  The origin of the 
instabilities is discussed in 44, with particular emphasis on the structure of the flow and 
its time-dependent behaviour. Some calculations have also been performed without 
the source and sink zones by using Ekman-type solutions as boundary conditions. 
The results are summarized in 95. 

2. Formulation of the problem 
We consider the incompressible flow of a viscous fluid injected into an annular 

cavity of height 212 and depth AR = R, - &, where & and R1 are the inner and outer 
radii, respectively (see figure 1). The cavity is rotating with uniform angular velocity 
52 = Qer, ez being the unit vector in the vertical direction. We consider axisymmetric 
flows. 

The equations governing the motion are the continuity and the Navier-Stokes 
equations. The scaling for the variables characterizing time, velocity and vorticity 
is h'/v, v / h  and v/h2. The vertical coordinate is z = z*/h, z E [-1,1] and the 
dimensionless radius is r" = r*/h, r" E [(R, - 1)L, (R, + 1)L], where R, = (R1 +&)/AR 
is the curvature parameter and L = AR/(2h) the aspect ratio. (For the description 
of the numerical scheme we will use the cylindrical coordinates referred to the centre 
of the cavity: Y = 2r*/AR - R,, thus the integration domain ( r , z )  E [-1, 112.) The 
equations are solved using the vorticity and streamfunction formulation ( r ,  y). The 
equations for the dimensionless variables in the rotating frame of reference are 

at a t  iit ut (2:. a) ;: - + u - + N ' - = V ( + < +  ,+- -, 
iit i i F  l?Z r 
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and a Poisson equation for the streamfunction y :  
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with 

and 

where (u, u, w) are the velocity components in cylindrical coordinates. The vorticity is 
defined by 

and the radial and axial components of the velocity are derived from the streamfunc- 
tion y :  

(2.7) 
L R ,  av 

r" az' r" a ? *  
w = -___ LRm dy u =  __- 

The Ekman number, E = v / ( Q h 2 ) ,  is the dimensionless rotation rate of the cavity. 
The boundary conditions for the velocity components at the inner radius, ? = 
(R, - 1)L, are 

C, R m + l  m 
U O ( Z )  = -~ cos -, V O ( Z )  = wo(2) = 0, 

S R m - l  2 
and at the outer radius, ? = (R ,  + l)L: 

(2 .8~)  

(2.8b) 

where C,y = Q / ( v  RI) is the dimensionless mass flow rate. No-slip and no-permeability 
conditions are imposed at the rigid walls, at z = +1: 

u = w = o .  (2.9) 

These walls are also subjected to uniform rotation which in our rotating system of 
coordinates gives the boundary condition at z = kl: 

v = 0. (2.10) 

2.1. Numerical method 

The system is solved numerically using a combination of a pseudo-spectral ap- 
proach in space and a second-order finite difference scheme in time (Chaouche 1990; 
Chaouche, Randriamampianina & Bontoux 1990). Any flow variable f and its deriva- 
tive (f stands for y ,  5 and v )  are developed in truncated series of the Chebyshev 
polynomials at the Gauss-Lobatto points, ( r i , z j )  E [-1, 112: 

xi n j  
N M 

ri = cos - , zj = COS - 

defined for i = 0, ..., N and j = 0, ..., M ,  as follows 
M N  

(2.11) 

(2.12) 
m=O n=O 
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(2.13) 

(2.14) 

with f,,., = f,,.,Jt) and fN.,, = f N M ( r i , z j ,  f). For the first and second derivatives, 
p = 1,2 and q = 1,2, the coefficients d$" and @''' are given by Ouazzani (1984) (see 
also Ehrenstein & Peyret 1989). 

The time scheme is semi-implicit and second-order accurate. It corresponds to a 
combination of the second-order backward differentiation formula for the diffusive 
(viscous) terms and the Adams--Bashforth scheme for the nonlinear (inertial) terms 
(Vanel et a!. 1986). The solution of the system at each time step reduces to the 
solution of a Helmholtz-type equation for the azimuthal velocity 2; and of a Stokes 
problem for the vorticity-streamfunction ( t -y) ) :  

(2.15) 
(2.16) 

(2.17) 

where s = 3/(26t) and 6 t  is the time step. F;+' are the source terms involving the 
known variables computed at the time steps (n+ l)b;t, n6t and (n- 1)6t. The influence 
matrix technique derived from the one proposed by Kleiser & Schumann (1980) and 
extended to the vorticity and streamfunction formulation in cylindrical coordinates is 
used to manage the boundary conditions for the above Stokes problem. 

The solver for the Poisson-Helmholtz equations is based on the partial matrix 
diagonalization technique developed by Haidvogel & Zang (1979). This technique has 
been applied in the radial direction, due to the presence of extra terms in equations 
(2.4), (2.5). All the eigenvalues and eigenfunctions computed were found to be real. 

3. Results 
Steady and time-dependent solutions have been sought in a wide range of param- 

eters. In table 2 some details of the steady solutions are included. The number of 
collocation points used for computations were: N Y  A4 = 40x40 in ( a ) ,  N x M = 64x64 
in ( b )  and (c), and N x M = 100 x 100 in (d ) .  For the case (e), where Ekman type 
boundary conditions are imposed at the entry and exit, the solution is oscillatory and 
two spatial resolutions, M = 40 x 40 and N Y M = 48 x 48 were used in order to 
test the accuracy of the solution. Comparison with one steady solution obtained by 
Bennetts & Jackson (1974) was carried out with N Y A4 = 40 x 40 and details are 
reported in ( # )  and (g). 

The time-dependent results presented in this section were obtained for L = 3.37, 
constant rotation rate, E = 2.24 Y and increasing mass flow rate in the range 
80 < C,, < 150 and using N x M = 40 x 40. Two values of the curvature parameter 
have been used: R, = 1.22, thus r" E [0.74,7.48], and R, = 5 ,  corresponding to 
F E [13.48,20.22]. The initial condition of the numerical simulations was generally 
the solution obtained for a lower C, and is given in table 3. We also performed 
simulations with other initial conditions (different flow regimes) in order to check 
that the solution is unique. The values of the time step used in the computations 
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were 3 x lop6 < 6 t  < 4 x and the optimal value for an oscillatory solution was 
6 t  = 3.4 x lo-', e.g. 6 t  - T/360, where T = l/f is the period (see table 3). The total 
time for the computation of the solution together with an estimate of the transient 
to stabilize oscillations (tiFans) are also given in table 3. 

The dynamical behaviour was investigated by noting the time history of the vorticity 
and the streamfunction at four locations in the cavity, denoted with subindices 1, 
2, 3 ,  4, and with coordinates ( r 1 , z l )  = (0.85,0.89), ( r 2 , z l )  = (0,0.89), (r3,z3) = 
(O,O), (r4, z4) = (-0.89,0.89) (these coordinates correspond to some Gauss-Lobatto 
Chebyshev points, and are referred to the centre of the cavity, thus ( r i r z i )  E [-1, 112). 
Points 1, 2 and 4 are near the horizontal wall (at the sink region, at the centre and at 
the source region respectively), and point 3 is at the centre of the cavity. 

Details of the solutions are presented in table 3. As the mass flow rate is increased, 
the solution becomes time-dependent and the frequency of the motion is indicated. 
Some significant magnitudes of the variables are also given for some characteristic 
solutions: the time dependence of the azimuthal velocity at points 2 and 3 of the 
cavity is represented by its temporal amplitude, Av = c',,,,, - v , ~ ~ ,  and its mean value, 
6; the value of the maximum azimuthal velocity in the cavity is given at an arbitrary 
instant, /v,,,l = max [v(yi, z , ) ] ,  with (ri ,  z j )  E [-1, 112. 

All the time-dependent results presented here (943 and 4) were obtained using 
N x M = 40 x 40 collocation points. (With this resolution there are eight collocation 
points between the wall and the vertical coordinate for which the radial velocity is 
zero, z* Y n6 for E = 2.24 x using N x M = 48 x 48 there are ten points.) The 
accuracy of this spatial resolution was tested in a cavity with R,, = 5 and using Ekman 
boundary layer profiles as boundary conditions at the inlet and outlet. For C, = 467 
and E = 2.24 x lop3 we obtained two solutions using N x M = 40 x 40 collocation 
points in one case and 48 x 48 collocation points in the other. The spectral coefficients 
of the streamfunction defined by equation (2.14), are a good measurement of 
the accuracy of the spatial resolution. The minimum and maximum coefficients in 
each expansion, min(Q,,,,m~)/max(~,,,) with n,n' E [O,N] and m,m' E [O,M], are 
1.3124 x 1Op6/3O5.576 using 40 x 40 and 2.8505 x 10-9/305.577 using 48 x 48. The 
frequency of the oscillatory motions obtained with these resolutions are f = 456 and 
f = 452 respectively, i.e. only a 1% difference. 

The important time scales in the rotating flow (see for instance Greenspan 1969) 
are the rotation period, th = 2n/Q (variables with an asterisk are dimensional), the 
time for vorticity to diffuse viscously to the midplane, t: = h2/v  and the Ekman 
spin-up time r ;  = h/ (vQ) ' / ' ,  which plays a crucial role. The physical meaning of these 
time scales and the main dynamical concepts become clear in the spin-up transition. 
If one takes a body of fluid between two disks and rotates them at constant angular 
velocity, the initial impulsive change in the angular velocity immediately produces 
(for t*+52-') a Rayleigh shear layer at each disk which then starts to thicken by 
viscous diffusion. Within a few revolutions, t* Y 5 2 - I ,  a quasi-steady-state Ekman 
boundary layer develops due to the vorticity diffusion. Superimposed on these quasi- 
steady motions are rapid inertial oscillations that are initially of large amplitude and 
propagate to the interior. (The angular frequency of inertial waves in a rotating fluid 
is o* = 2521 cos 81, where 8 is the angle between the vectorial wavenumber and the 
angular velocity, 0.) As time proceeds the oscillations gradually decay in amplitude. 
As the conditions in the interior approach the values appropriate to the final state, 
the Ekman layers decay and the oscillations decay in amplitude in a time t* 2: t;. At 
very large time of order of t t ,  viscous diffusion has affected the entire interior and 
the small residual inertial oscillations are strongly damped. The three time scales, 
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corresponding to the development of viscous boundary layers, the spin-up time and 
the viscous decay of residual effects are in our case (in dimensionless units h 2 / v ) :  
t~ = 27cE = 0.014, t E  = = 0.047, t ,  = 1. The maximum angular frequency for 
inertial waves is 2Q, which corresponds in our dimensionless variables to a maximum 
frequency f = 2/E = 141. 

3.1. Steadyflow S 
When the rotation rate is E = 2.24 x the flow is steady for C, < 100. At 
C ,  = 100, the flow obtained with the computations, shows the four regions mentioned 
before and described by Hide (1968) and observed experimentally by Bennetts & 
Jackson (1974) and Owen et al. (1985) (see figure 2). 

The mass transport along the radial direction takes place entirely within the 
boundary layers. The radial length of the source layer, or inflow region, is larger than 
the sink layer, by a factor of five. This feature is characteristic of the nonlinear regime 
when the inertial terms are important. In the core region, the flow is geostrophic: 
both the radial and the axial velocities are close to zero and the flow rotates inside 
the cavity at slower rate than the walls. The approximate asymptotic expression for 
the azimuthal velocity is (Hide 1968) 

x [ 1 - e x p ( y ) c o s ( y )  -exp( -(h + z * )  ) c o s ( y ) ] .  

(3.1) 
The ratio of inertial to Coriolis forces is known as the Rossby number, Ro = 

V i / ( Q r * ) ,  where V i  is the local geostrophic velocity, 6 = (v/Q)l/* the thickness of 
the boundary layer, and rf the dimensional radial position. Hereafter we will give the 
Rossby number, Ro, obtained with the computed values of the azimuthal velocity at 
the centre of the cavity. For C ,  = 100, the computed value at the centre, r" = 4.1 and 
z = 0 is v = -639 and it corresponds to a strongly nonlinear flow, Ro = 0.359. This 
solution is ( a )  in table 2. We will use this solution and increase the mass flow rates in 
the next subsections. 

We have obtained other stationary solutions for increasing rotation rates and 
also in a different geometry. In figure 3 the numerical results for C, = 75.8 (then 
the resulting value of the Rossby number at the centre of the cavity, u" = 3.363 is 
Ro = 0.363) are shown together with the numerical and experimental results obtained 
by Bennetts & Jackson (1974), for Ro = 0.363; the other parametric values are the 
same: E = 6.4 x lop3, L = 1.34. Even though the boundary conditions at the entry 
and the exit are not the same, their numerical solution is reproduced almost exactly. 
(For the radial velocity at the entry and the exit, u(r" = 2.023), and u(P = 4.703) they 
use an almost constant profile, smooth near the corners at z = f l ,  while we use a 
cosine profile (2.8a).) 

The characteristics of the nonlinear solution are well explained by these authors. 
However we include some results concerning the differences between the analytical 
expression for the asymptotic solution obtained by Hide (1968) and the numerical 
solution. The depth of the boundary layer and the Ekman solution remain good 
approximations as is seen in table 2 for very different parameters. However in figure 4 
and in table 2 it is seen that for higher values of the Rossby number, the depth is 
slightly larger. The cases (f) and ( g )  show the same numerical solution at different 
Y: ( f )  at the centre, and ( g )  at a slightly different radial position. The values of 
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Y 

FIGURF 2. (a) Streamlines of the steady flow for C,, = 100, E = 2.24 x lo-', L = 3.37 and R, = 1.22. 
( h )  Two-dimensional azimuthal and radial velocity plots: L' x i and u x F. Boundary conditions from 
equation (2.8 a.h)  at P = 0.74 and i = 7.48 ( r  = f l ) .  Ro = 0.359 

the Rossby numbers are obtained with the value of the velocity u at the position r" 
and z = 0. The crII is the value from (3.1) predicted from the asymptotic solution 
of Hide (1968) at the same location. The z,,,,, are the positions of the maxima of 
the radial and azimuthal velocity components (numerical solution) and Z,n(xr(lh) are 
the theoretical positions of the maximum azimuthal velocity, i.e. z = 3n/4 and 
radial velocity, z = E"' n/4. The numerical radial velocity at the core was found 
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FIGURE 3. Comparison of the numerical results ( . . . )  for C, = 75.8, with numerical (-) and 
experimental ( 0 )  results obtained by Bennetts & Jackson (1974) for Ro = 0.363, E = 6.4 x 
L = 1.34. 
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FIGURE 4. Comparison of the numerical solution (. . .) with the asymptotic solution (3.1) (-) obtained 
by Hide (1968) for the same parameters as in figure 3, at different positions: (a)  u(P = 3.363,~); (b)  
u(P = 3.363, z ) ;  (c) ~ ( i  = 3.631, z ) ;  ( d )  ~ ( i  = 3.631,~). 
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0.15T 0.72T 

0.43T 0.86T 
FIGURE 5. Instantaneous plots of the iso-streamfunction lines of the oscillatory flow at different 
time steps. C,, = 120, E = 2.24 x lo-’. L = 3.37 and R,n = 1.22. The period is T = 0.0124 and at 
the centre of thc cavity Ro = 0.433. Boundary conditions from (2.8a.h) at F = 0.74 and F = 7.48 
(1. = & I ) .  

to be zero. Also, the radial velocity in the boundary layers is weaker than in the 
theory due to inertial terms as shown in figure 4. Associated with this fact, it is noted 
that the velocity at the core is underestimated by the analytical solution (3.1). The 
difference between these values increases at higher Rossby number and in that case 
results from nonlinear effects. 

3.2. Transition S -+ P 1  
Using the solution of figure 2 as initial condition, the mass flow rate was increased 
and the same values of all the other parameters were kept. At C,, = 120 the motion 
is oscillatory with a frequency f = 80.8. The corresponding period, T = l/f = 0.0124 
is close to the rotation period to = 0.014. A long transient time is needed to reach 
the stabilized time-dependent solution, i.e. t,,.,,, = 1.5, larger than the viscous time, 
t ,  = 1 .  

The transition to periodic flow is associated with a break in the symmetry of the 
flow pattern with respect to the midheight of the cavity, as can be observed comparing 
the plots of the streamfunction in figures 2 and 5. In order to display the oscillatory 
behaviour the iso-y plots are represented in figure 5 at different time steps during a 
period. At the source region the entry flow wavers near the horizontal middle plane, 
z = 0, and its wavelength is about the size of the source region, %* - AR/7.5. During 
one period the wavy motion flows alternately towards the top and the bottom Ekman 
layers. The Ekman boundary layers do not seem to be disturbed by the instability 
(see figure 5 ) .  The velocity at the centre of the cavity is 2) = -796 (Ro = 0.433). 

The flow is oscillatory, P1, when C, is increased to 125 and 130, and the corre- 
sponding frequencies are f = 80.3 and 80.9. These frequencies are about the same as 
the frequency obtained at C, = 120. During the transient to the oscillatory solution 
at C, = 130, we have observed a modulation (about f / 6 )  on the signals of the vari- 
ables at the Ekman layers, y ( t ; r l , z l ) ,  with i = 1,4. The amplitude of the modulation 
decreases with time and the final solution is oscillatory. This modulation was not 
observed at other locations, or for C, = 120 and 125. 
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3.3. Transition P I  -+ QP 
On increasing the mass flow rate C, up to 132, the power spectra reveal a quasi- 
periodic dynamic behaviour, denoted QP, with two incommensurate frequencies, f 
and f ’ ,  81.3 and 11.9, respectively ( T  = 0.0123 and T’ = 0.084). 

The instantaneous iso-y, plots in figure 6 do not reveal substantial differences with 
respect to the flow in the periodic regime, P1. However, the wavy flow observed at 
the entry has a larger amplitude and a slightly shorter wavelength than the periodic 
instability at C, = 120. Analysis of the power spectra from the streamfunction at 
different locations in the cavity in figure 7, shows that the intensity of the second 
frequency, f ‘ ,  is at least two orders of magnitude smaller than the magnitude of 
the fundamental frequency (the amplitude of the oscillation of the streamfunction is 
however larger in the source region). The instability appears to be weaker at the sink 
region than at the other locations and also at the sink region there is a long transient 
during which the signal remains mainly periodic before modulation arises. 

The computed value of the azimuthal velocity for C,, = 132 at the centre of the 
cavity is v = -873 giving Ro = 0.475 at the centre. At C,, = 133.5 the solution is still 
quasi-periodic, with frequencies f = 81.2 and f’  = 11.9. 

3.4. Transition QP + P 5  
When C ,  is further increased to 135, the frequencies lock-on to a new regime, denoted 
P5, with a rational relation f / f ’  = 5, with f = 85.2 and f ‘  = 16.7. In figure 8 the 
dynamical behaviour is shown by Poincare maps constructed by plotting the values of 
the streamfunction and of the vorticity at two different locations every time that the 
streamfunction attains an arbitrary reference value at another location. The reference 
values used are: in figure 8(a) w( r2 , z2 )  = 131.35, in 8(b) 1p(r2,z2) = 133.2 and in 8(c) 
y)(r2,z2)  = 134.3, and in all cases 31p/ lJt  > 0. Increasing the mass flow rate up to 
C, = 132, 133.5, 135 the transition reveals in the Poincare maps in figure 8:  from 
the QP regime ( a )  with a non-periodic behaviour in (b) ,  to the P5 regime with the 
points grouped at five positions in (c). When C,, is decreased there are no traces 
of hysteresis; for instance, the QP solution is also obtained at C, = 133.5 from 
the period-five P 5  solution at C,, = 135 and so on. The flow is very similar to the 
quasi-periodic flow in figure 6. The computed azimuthal velocity at the centre of the 
cavity is v = -892.1 giving Ro = 0.486. 

3.5. Transition P 5  + N P  
A further increase of the mass flow rate C, to 136 leads to a transition to a chaotic 
regime (NP). The flow is also chaotic at C, = 140 and 150. The streamfunction lines 
present strong oscillations of the entry zone and some recirculation zones at both 
sides of the entry wave. Figure 9 has noticeable similarity with the flow visualized 
by Owen et al. (1985). The wavy motion at the entry, and the recirculation zones at 
the corners are reminiscent of the instabilities which appear in plane symmetric ducts 
with a sudden expansion (Cherdron, Durst & Whitelaw 1978; Fearn, Mullin & Cliffe 
1990). 

4. Analysis of the instabilities 
In the representation of the instantaneous streamfunction lines it is observed that 

the unsteady motion is related to a wave in the source region. In this section we will 
discuss this unsteady motion and we will compare it with other instabilities which 
present similar features. 
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FIGURE 7. Power spectra of the streamfunction at two locations in the cavity: (a )  at the centre of 
the cavity and ( b )  inside the Ekman boundary layer for the flow of figure 6. The frequencies are 
f = 81.3 and j”’ = 11.9. 

The instabilities observed by Hide appeared at very low values of the mass flow 
and rotation rates, C ,  < 20 and E - lo-’ to 1 and their origin is not given; 
thus we will not discuss them. Owen & Pincombe (1980) and Owen et al. (1985) 
attributed the turbulent flow obtained in their experimental configuration to Ekman- 
layer instabilities. The parameters characterizing these instabilities are the local 
Reynolds number, Re = V;6/v, where V i  is the local geostrophic velocity, 6 = 

( v / Q ) ’ / ~  the thickness of the boundary layer, and r* the dimensional radial position, 
and the local Rossby number defined before, Ro = V,*/(Qr*) .  The waves associated 
with the instabilities of this boundary layer form a series of horizontal roll vortices 
whose spacing is related to the depth of the boundary layer (Greenspan 1969). In 
table 1 there is summary of the results in the literature for the local orientation of 
these waves with respect to the geostrophic flow, the wavelength and the frequency. 

There are two difficulties in the mathematical treatment of the three-dimensional 
problem. One is the non-axisymmetry and the other is the curvature effect. Some 
theoretical studies on rotating flows avoid the first difficulty by considering that the 
wave forms an angle with the geostrophic velocity. For instance the stability analyses 
of the Ekman boundary layers calculate the critical parameters as a function of the 
angle (and so the critical angle), but they do not take account of the curvature effects. 
(For instance, as the predicted critical phase velocity is proportional to the geostrophic 
velocity, and this depends on the radius (l/r*), then the critical wavelength is also 
expected to vary with the radius.) Because of our axisymmetry assumption our 
computations are limited to waves forming an angle of zero with respect to the 
geostrophic flow, but we may study curvature effects and Ro # 0. In the limit of large 
radius, R,,, + co, we can compare with linear stability results for CI = 0. An approach 
using an azimuthal wavenumber different from zero together with curvature effects 
might explain the origin of spirals like those observed in the recent experiments of 
Thomas (1994) who found that patterns of the Ekman layer instability follow a law 
n2 = ReRo, n being the number of arms of the spiral. 

Thus in $4.1 we describe some calculations performed in order to observe the insta- 
bility of the Ekman boundary layers, to compare with the literature and specifically 
to understand the unsteady flow in our configuration in §3.  The relevance of the 
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t = 0.103 

0.41 1 0.925 

0.514 1.028 

FIGURE 9. Instantaneous iso-streamfunction lines of the non-periodic flow for C, = 140, 
E = 2.24 x lop3, L = 3.37 and R, = 1.22. Boundary conditions from (2.8a,b) at P = 0.74 
and r" = 7.48 ( r  = kl). 

Ekman boundary layers and of the inner region is discussed in 454.1 and 4.2. Finally 
we discuss other instabilities such as vortex shedding during a sudden expansion of 
the flow in a channel and vortex breakdown in a rotating annulus with a forced flow 
entering axially. Although these situations are different from the one studied here, in 
all of them the instabilities are excited at the entry. 

4.1. Instability of the Ekman layers 
Experiments on rotating flows (see table 1) have revealed two different instabilities 
of the Ekman layers, called type I1 and I (or A and B).  The type I instability is 
associated with an inflexion point in the velocity profile of the basic flow and the 
type I1 instability involves Coriolis and centrifugal forces rather than the inflexion 
point (Lilly 1966; Faller 1991). The empirical relationship for the critical parameters 
of type I1 waves is approximately (Re):' = 56.3 + 58.4 Ro. These waves develop first 
and are very sensitive to the value of Ro. The relationship for the critical parameters 
for type I instabilities is: (Re):, = 124.5 + 3.66Ro. Using the zero-order solution 
for the azimuthal velocity, (equation (3.1)) the Reynolds and Rossby numbers at a 
given position, r* ,  are: Re 2: - Q / ( 2 m * v )  and Ro N - Q / [ 2 ~ ( v Q ) ' / ~ ( r * ) ~ ] .  Note that 
the Reynolds and Rossby numbers so defined are negative but for convenience they 
will be treated as positive numbers; these minus signs only account for the fact that 
azimuthal velocity goes against rotation in the rotating frame of reference. 

In order to understand the appearance of these instabilities in our axisymmet- 
ric modelling, we performed some computations using Eknian profiles and the 
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geostrophic velocity from equation (3.1) as boundary conditions, at  P = 13.48 and 
i: = 20.22. The use of these boundary conditions prevents the instabilities of the entry 
flow. We considered almost the same configuration I!. = 3.37 and rotation rate, but 
in this case we used the curvature parameter R,, = 5 (i’ E [13.48,20.21]) in order 
to diminish the nonlinear terms, characterized by Ro. This situation is closer to the 
experimental conditions used to study Ekman-layer instabilities. 

The final steady flow i n  this cavity is an Ekman-type flow at any P with geostrophic 
velocity- close to the value given by (3.1). Recall that this equation is an asymptotic 
solution and its accuracy is about 7%. At C,? = 467 we obtained an oscillatory motion. 
The perturbations of the flow are obtained by subtracting the Ekinan profile from 
the computed flow. The resulting instantaneous iso-r/> lines in figure 10 show small 
vortices near the horizontal walls, which correspond to an Ekman-layer instability 
similar to those described by Faller (1991) in his figure 7. The different size of the 
vortices near the inlet and outlet is also due to the geostrophic velocity used in the 
boundary conditions (from equation (3.1 )). Anyway this small discrepancy does not 
significantly affect the resulting How in the rest of the cavity. 

The computed values of the local Reynolds and Rossby numbers are dependent 
on the position: at i’ = I13.48, 16.85, 20.22). K c  = 112. 93. 74). and Ro = 

(0.392, 0.288. 0.174). This position dependence of the Reynolds and Rossby numbers 
comes from the variation of the geostrophic velocity with the radial position as can 
be observed i n  equation (3.1 1. 

In order to compare the physical parameters with the results in the literature, we 
will scale the wavelength with the boundary layer depth, >. = ; . * / C i ,  and the frequency 
with the rotation rate frequency ci = 2nf*/Q. The comparison of the linear stability 
results with the observations in the experiments must be done cautiously. The linear 
stability results provide the i of the most unstable mode, and its corresponding 
cr, at each Rv (and with Ro = 0). However in the experiments, and in numerical 
computations. the waves are observed at Reynolds numbers far above the critical Re 
and for Ro # 0. In the experiments, at  a given frequency the flow also showed many 
different waves with different wavelengths and directions (Caldwell & Van Atta 1970). 

In our computations the wavelength decreases slightly with the radius, i* c/c l / r* ,  
in a range >.* 4 296 to 26h (see table 1). The value of the frequency, j’* = 456 v / h 2 ,  
is in dimensionless form r~ 1 6. The comparison with the previous results is not 
obvious because the local Reynolds number varies for 13.48 < i‘ d 20.22 in a range 
112 3 Re >, 74. But it appears to be compatible with the frequency obtained by 
Caldwell & Van Atta. 

The reported theoretical values of frequencies for type 1 and IT waves for the most 
unstable mode (Lilly 1966) are, at Re = 65, 2: 12 (type 11) and at Re = 110, cr v 14 
(type 11) and CT z 5 (type 1). The frequencies in the experiments by Caldwell & Van 
Atta are obtained far above the critical Re, after the perturbations have grown for 
some time, thus having many wavelengths and different directions. In the range 
I10 < Re < 250, they report a linear dependence of the frequency: 7 < CJ < 12. These 
authors observed that the frequency increased with increasing Reynolds number, as in 
Lilly’s calculation for type I I instability; this observation supported their conclusion 
that their instability is type 11. 

The vortices travel in the radial direction with a phase speed VG = 0.28 V,* (see 
figure 10 and table I ) .  The phase speed of the instability does not depend on the 
location. 

Summarizing, the parameters which characterize the instability, i.e. the wavelength, 
the phase velocity and the frequency are not easily comparable with the values in the 
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FIGURE 10. Perturbations of the streamfunction of the oscillatory flow for C ,  = 467, E = 2.24 x 
L = 3.37. Ekman-layer-type profiles are used as boundary conditions at the inlet and outlet: 
P = 13.48 and P = 20.22 ( r  = +1, R, = 5). The period is T = 0.0022 and at  the centre of the cavity 
Ro = 0.29 (in which case 13.5 d r ' / h  d 20.22). The location of half a vortex is marked at different 
instants. 

literature. For instance the wavelength varies with the position as A* cc l /r*,  i.e. it 
does depend on the local Re and Ro. Otherwise the frequency and the phase velocity, 
V;/V,*, do not vary with the position. Like the results from Maubert et al. (1992) 
and Maubert (1993) for R,,, = 13.94 and constant C,, the frequency seems to vary as 
f cc E.  

These unknown dependencies A* = T ( R e ,  Ro) and f = f(C,, E )  make the compar- 
ison with the values in the literature difficult. 

4.2. Instability of the entry Jow 
Going back to the results obtained in 93 using a Poiseuille-type profile as boundary 
conditions at the vertical boundaries, we will discuss here in detail the flow associated 
with the time-dependent behaviour. In $3 we have described the transitions of the 
steady flow to time-dependent flows at increasing C,  : the first instability, S + P 1, is 
observed at C ,  = 120 corresponding to the local parameters at r" = 4.1 1 : Ro = 0.43 



Spatio-temporal behaviour in a rotating annulus 29 1 

P 

t = O  

0.151 

0.58T 

0.86T 
FIGURE 11. Perturbations of the vertical velocity component of the flow at  C,, = 120 (flow of 

figure 5 )  in the core region (4.1 1 < P < 7.14 and -1 < z < 1) 

and Re = 38 (at thc centre of the cavity). A t  C‘\, = 135, the local parameters at 
F = 4.1 1 are Ro = 0.49 and Re = 42. Thcsc values of the Reynolds number are 
smaller than thc critical valuc t i x  E,ktnati-layer instabilities obtained by experiments 
and stability thcory: Rc’, 3 55.  

In order to check if the previous results in $3 could also be related with the Ekman- 
layer instabilities we observe this region carefully. Subtracting the main flow (we used 
the steady computed flow) from the total flow at C ,  = 120, some vortices are visible 
near the Ekman layers and also in the core region. In figure 11 the perturbations 
correspond to the flow in figure 5 (we have removed the source and sink regions). 
During a period, the perturbations in the core region connect both horizontal layers. 

Owen & Pincombe (1980) and Owen et al. (1985) described the instabilities ob- 
served in their visualization as “weak instabilities in the ‘developed ’ Ekman layers 
adjacent to the potential core and large-scale instabilities in the ‘developing’ Ekman 
layers inside the inner layer. These large-scale instabilities give rise to unsteady flow 
throughout the inner layer” (see Owen & Pincombe 1980). Their instability criterion 
was arbitrary : in Owen & Pincombe (1980) they used ‘the radius at which the ripples 



tl
 

+ -
 + --

'4
 

'7 

'13
 

'1
4 

T
im

e 

2 ? 3
 a
 

r: 3 3 %
. 

2
. 

a 3
 

a
 

F
IG

U
R

E
 

12
. P

er
tu

rb
at

io
ns

 o
f 

th
e 

ve
rt

ic
al

 v
el

oc
ity

 c
om

po
ne

nt
 o

f 
th

e 
qu

as
i-

pe
ri

od
ic

 f
lo

w
 f

or
 C

, 
=

 1
32

 (
fl

ow
 o

f 
fi

gu
re

 6
) 

in
 t

he
 c

or
e 

re
gi

on
: 

4.
1 

1 
<

 F
 <

 7
.1

4 
an

d 
-1

 
<

 z 
<

 1
 a

t 
se

ve
ra

l 
in

st
an

ts
 (

t,
, 1 
-
 t,

 =
 0

.5
6 

x 
1O

P
2T

),
 w

ith
 T

 =
 0

.0
12

3 
an

d 
T

' =
 0

.0
84

. 



Spatio--temporal behaviour in a rotating annulus 293 

in the boundary of the Ekman layer could no longer be discerned with the naked eye’, 
and in Owen et al. (1985) they observed that ‘the tangential component of velocity 
measured in the core departed significantly from that predicted by the linear theory 
for laminar flow’; however both criteria gave similar values of the critical parameters 
(1Oo/0). They concluded that transition from laminar to turbulent flows takes place 
at Re z 180. Although these authors have not carefully studied the entry flow, their 
description is consistent with the features we have observed in our unsteady flow 
(at lower values of C,. and Re because the numerical method allows us to have 
sensitiveness very near the onset of the instability). 

The frequency of the oscillatory motion, P1, is close to the rotation frequency of 
the cavity, cr = 1.14. This fact is characteristic of inertial waves, which occur in 
rotating flows with frequency values ranging from zero to 2a. The frequency obtained 
by Tatro & Mollo-Christensen who also used a low curvature parameter is 0 N 1, 
and it has been shown by Cerasoli (1975) that their instability was excited by the 
test probe. In our numerical studies the instability is excited by the entry flow which 
induces perturbations in the Ekman layers that decay gradually in the radial direction 
(the local Reynolds number decays in the same direction). No change of the pattern 
flow is observed in the quasi-periodic regime in figure 6 which could be associated 
with the onset of the second frequency. The disturbances of the streamfunction in 
the core region 4.1 1 < r“ < 7.14 are presented in figure 12. The frequency f ’  is of the 
same order as the inverse of the spin-up time, and it is seen with more intensity in the 
spectrum of the signal at the Ekman layer, suggesting the hypothesis that it is related 
with the time of decaying for the perturbations at the boundary layers. However the 
reason why this frequency appears only for high mass flow rates (or local Reynolds 
numbers) is not well understood. 

4.3. Similarity with other instabilities 
Because the instability is observed at the source region, we have searched in the 
literature for experiments in forced flows showing similarities in flow visualizations 
and also in the physical conditions. 

We discuss the visualizations of the flow in a two-dimensional plane channel after 
a sudden expansion obtained by Cherdron et al. (1978) and also Fearn et al. (1990) 
(see the figure 11 of the second paper). In this case the steady flow displays symmetry 
about the midplane of the channel with two identical regions of recirculating flow 
behind the steps of the expansion. On increasing the velocity at the entry, the flow 
becomes asymmetric (steady). On further increasing the velocity at inlet, a third 
recirculating Lone appears attached to one of the walls. At this stage the flow is 
oscillatory, the vortices being shed periodically from the top (bottom) shear layer at 
the downstream end of the third recirculation zone. This description of the mechanism 
fits with our results shown in the figure 9, where a recirculation zone is seen alternately 
at the top and bottom of the entry flow. Also in our rotating cavity the Poiseuille 
flow at the entry expands somewhat while readjusting to the flow in the core region, 
i t .  a geostrophic region and two Ekman boundary layers. The controlling parameter 
in a sudden expansion is the critical Reynolds number based on the maximum 
inlet velocity and the upstream channel height, and the onset of oscillatory motion is 
predicted theoretically (and confirmed by the experiments) at an equivalent C, = 120. 
The frequency at C, = 128 is f ’  2 4, i.e. of the order of the viscous diffusion time. 

A vortex breakdown phenomenon is described by Owen & Pincombe (1979), who 
studied experimentally a rotating cavity with a jet entering in the direction of the 
axis of rotation. At the lower values of the entry flow, they observed occasional flow 
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reversal at the downstream end of the jet. This behaviour is termed the axisymmetric 
vortex breakdown mode, and has a frequency 2nf*/12 = 1. (Note that is the same as 
we found in our first transition; also very small reversal flows are observed at the sides 
of the entry flow, and they are evident in the quasi-periodic flow in figure 6.) This 
axisymmetric vortex breakdown mode occurred in the experiments for low values of 
the Rossby number. At higher values of the Rossby number they found a spiral 
breakdown mode. 

5. Summary and conclusions 
We have investigated the axisymmetric instabilities which appear in a source-sink 

rotating flow at high rotation rate, E = 2.24 x In this configuration the structure 
of the flow comprises four separate regions which are very similar before and after the 
transition to unsteady motion, as has been observed in experiments (see 54). Thus, an 
instability of the entry flow with an azimuthal wavenumber is not expected to behave 
differently from the axisymmetric one considered here. The restriction to an angle 
CI = 0 in the study of the instability of the Ekman boundary layers has been discussed 
in $4.1 and the qualitative spatial and dynamical behaviours seem well represented. 
Moreover, there may be a range of parameters for low Rossby number where the 
instability of the entry flow is axisymmetric, as is the case of the vortex breakdown 
described by Owen & Pincombe (1979). 

In most of the computations we have considered a cavity with small radius of 
curvature, R, = 1.22. In that case the local Rossby number is high, Ro 21 0.36 
to 0.49, favouring the appearance of inertial waves excited by the entry flow. We 
have performed computations in a cavity with R,,, = 5 (giving Ro N 0.29), using an 
Ekman-type profile as boundary conditions to get an insight into the instabilities of 
the Ekman boundary layers and we have used this information to elucidate different 
aspects of our instability, presented in $3. 

We summarize the results for the cavity with a Poiseuille-type profile at the source 
and sink and for a small radius of curvature. The steady solutions obtained for 
C, d 100 agree with previous experimental and numerical results in the literature. 
The flow is symmetric with respect to the midheight plane, z = 0, and the transition 
to oscillatory motion breaks this symmetry. For C, > 120 the flow is time-dependent; 
however, the main flow maintains the same global structure and the instabilities are 
relatively weak perturbations of the main flow. In particular at C, = 120 the flow 
is oscillatory and the patterns of the streamfunction reveal oscillations at the entry 
zone. When the basic (steady) flow is subtracted from the total flow, the perturbations 
of the streamfunction are vortices along the Ekman boundary layers and horizontal 
waves in the core region connecting the vortices. The amplitude of the vortices 
decreases gradually in the radial direction (as could be expected from the dependence 
Re K F-') and varies with time. The wavelength of the perturbations decreases in the 
radial direction also. The frequency of the oscillatory motion is close to the rotation 
rate frequency of the cavity, suggesting an inertial wave in a rotating fluid. At 
C, = 132, the flow becomes quasi-periodic. The analysis of the corresponding spatial 
pattern does not reveal any qualitative difference with the periodic flow. A plausible 
explanation for the second frequency, which has a value close to the Ekman or 
spin-up characteristic time, is that it is related to the decaying time for perturbations. 
This behaviour would not be observed in the figures for the quasi-periodic regime 
(figures 6 and 12) because the period of this decaying is about five times the period 
of the entry wave, which has stronger intensity. The values of the frequencies and 
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wavelengths, together with the images of the flow support the hypothesis that the 
entry wave has an inertial nature and excites the vortices at the Ekman layers which, 
due to the low value of the local Reynolds number, are unstable and damped. 

Using Ekman layer profiles as boundary conditions at the source and sink, in 
a cavity with a larger radius of curvature, we have investigated the appearance of 
instabilities of the Ekman boundary layers in $4.1. We have obtained an oscillatory 
motion associated with perturbations along the boundary layers. These perturbations 
are vortices and are visualized as waves in the total flow in the experiments (Faller 
1991). Although the actual flow is three-dimensional, the major features of the 
instability can be understood by considering an axisymmetric flow. The parameters of 
the unstable flow, such as Reynolds and Rossby numbers, frequency, wavelength are 
consistent with the results available in the literature. In principle, these values suggest 
that it could be the case of an Ekman layer instability of type 11. But the unknown 
dependence of the wavelength on the local parameters, ).(Re, Ro) and of the frequency 
(or phase velocity) on the rotation rate f ( E ,  C,) does not allow us to conclude whether 
it is a type I1 or type I instability. In any case the result confirms unambiguously 
that the instabilities studied in $3 are not instabilities of the Ekman layers. 

The computations were carried out on both CRAY YMP2E and CRAY C98 com- 
puters with support from IMT (Chgteau-Gombert, Marseille) and Conseil Rkgional 
PACA, and from IDRIS/CNRS (Orsay), respectively. The authors are indebted to 
Professor M. A. Rubio (UNED, Madrid) for his valuable comments throughout the 
course of this work. The authors are also grateful to Dr A. M. Chaouche for writing 
the numerical code and to Professor J. M. Owen (University of Bath), Professor 
J. C. Antoranz (UNED, Madrid) and Professor R. L. Sani (University of Boulder, 
Colorado) for fruitful discussions. The research was supported by DGA, DRET 
(Groups 6 and 7), SNECMA (Group YKL), GDR MFN (CNRS), Conseil Regional 
PACA, Intl. Exchange Progs. and Ministere des Affaires Etrangeres (France) and 
CICYT PB93-0293 and PB94-0382 contracts, Accion Integrada Hispano-Francesa 
52B contracts (Spain). 
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